OPEN IN READ APP
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL

Caffeine Improved Time to Exhaustion But Did Not Change Alternative Maximal Accumulated Oxygen Deficit Estimated During a Single Supramaximal Running Bout

Rodrigo De Araujo Bonetti De Poli, Willian Eiji Miyagi, Fabio Yuzo Nakamura, Alessandro Moura Zagatto
International Journal of Sport Nutrition and Exercise Metabolism 2016, 26 (6): 549-557
27096623
The aim of the current study was to investigate the effects of acute caffeine supplementation on anaerobic capacity determined by the alternative maximal accumulated oxygen deficit (MAODALT) in running effort. Eighteen recreational male runners [29 ± 7years; total body mass 72.1 ± 5.8 kg; height 176.0 ± 5.4cm; maximal oxygen uptake (VO2max) 55.8 ± 4.2 ml·kg(-1) ·min(-1)] underwent a graded exercise test. Caffeine (6 mg·kg(-1)) or a placebo were administered 1 hr before the supramaximal effort at 115% of the intensity associated with VO2max in a double-blind, randomized cross-over study, for MAODALT assessment. The time to exhaustion under caffeine condition (130.2 ± 24.5s) was 11.3% higher (p = .01) than placebo condition (118.8 ± 24.9 s) and the qualitative inference for substantial changes showed a very likely positive effect (93%). The net participation of the oxidative phosphorylation pathway was significantly higher in the caffeine condition (p = .02) and showed a likely positive effect (90%) of 15.3% with caffeine supplementation. The time constant of abrupt decay of excess postexercise oxygen consumption (τ1) was significantly different between caffeine and placebo conditions (p = .03) and showed a likely negative effect (90%), decreasing -8.0% with caffeine supplementation. The oxygen equivalents estimated from the glycolytic and phosphagen metabolic pathways showed a possibly positive effect (68%) and possibly negative effect (78%) in the qualitative inference with caffeine ingestion, respectively. However, the MAODALT did not differ under the caffeine or placebo conditions (p = .68). Therefore, we can conclude that acute caffeine ingestion does not modify the MAODALT, reinforcing the robustness of this method. However, caffeine ingestion can alter the glycolytic and phosphagen metabolic pathway contributions to MAODALT.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
27096623
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"