Add like
Add dislike
Add to saved papers

Low-Delay Rate Control for Consistent Quality Using Distortion-Based Lagrange Multiplier.

Video quality fluctuation plays a significant role in human visual perception, and hence, many rate control approaches have been widely developed to maintain consistent quality for video communication. This paper presents a novel rate control framework based on the Lagrange multiplier in high-efficiency video coding. With the assumption of constant quality control, a new relationship between the distortion and the Lagrange multiplier is established. Based on the proposed distortion model and buffer status, we obtain a computationally feasible solution to the problem of minimizing the distortion variation across video frames at the coding tree unit level. Extensive simulation results show that our method outperforms the rate control used in HEVC Test Model (HM) by providing a more accurate rate regulation, lower video quality fluctuation, and stabler buffer fullness. The average peak signal-to-noise ratio (PSNR) and PSNR deviation improvements are about 0.37 dB and 57.14% in the low-delay (P and B) video communication, where the complexity overhead is  ∼ 4.44% .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app