JOURNAL ARTICLE

Apolipoprotein E-/- Mice Lacking Hemopexin Develop Increased Atherosclerosis via Mechanisms That Include Oxidative Stress and Altered Macrophage Function

Niyati U Mehta, Victor Grijalva, Susan Hama, Alan Wagner, Mohamad Navab, Alan M Fogelman, Srinivasa T Reddy
Arteriosclerosis, Thrombosis, and Vascular Biology 2016, 36 (6): 1152-63
27079878

OBJECTIVE: We previously reported that hemopexin (Hx), a heme scavenger, is significantly increased and associated with proinflammatory high-density lipoprotein under atherogenic conditions. Although it is established that Hx together with macrophages plays a role in mitigating oxidative damage, the role of Hx in the development of atherosclerosis is unknown.

APPROACH AND RESULTS: We used Hx and apoE double-knockout mice (HxE(-/-)) to determine the role of Hx in the development of atherosclerosis. HxE(-/-) mice had significantly more free heme, reactive oxygen species, and proinflammatory high-density lipoprotein in their circulation, when compared with control apoE(-/-) mice. Atherosclerotic plaque area (apoE(-/-)=9.72±2.5×10(4) μm(2) and HxE(-/-)=27.23±3.6×10(4) μm(2)) and macrophage infiltration (apoE(-/-)=38.8±5.8×10(3) μm(2) and HxE(-/-)=103.4±17.8×10(3) μm(2)) in the aortic sinus were significantly higher in the HxE(-/-) mice. Atherosclerotic lesions in the aortas were significantly higher in the HxE(-/-) mice compared with apoE(-/-) mice. Analysis of polarization revealed that macrophages from HxE(-/-) mice were more M1-like. Ex vivo studies demonstrated that HxE(-/-) macrophage cholesterol efflux capacity was significantly reduced when compared with apoE(-/-) mice. Injection of human Hx into HxE(-/-) mice reduced circulating heme levels and human Hx pretreatment of naive bone marrow cells ex vivo resulted in a shift from M1- to M2-like macrophages.

CONCLUSIONS: We conclude that Hx plays a novel protective role in alleviating heme-induced oxidative stress, improving inflammatory properties of high-density lipoprotein, macrophage phenotype and function, and inhibiting the development of atherosclerosis in apoE(-/-) mice.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
27079878
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"