JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Utilization of animal models to investigate nonalcoholic steatohepatitis-associated hepatocellular carcinoma.

Oncotarget 2016 July 6
Nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of liver disorders with fat accumulation from simple fatty liver, nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis and NAFLD/NASH-associated hepatocellular carcinoma (HCC). NASH is a progressive form of NAFLD and requires medical attention. One of 5-10 NASH patients may progress to end-state liver disease (ESLD or cirrhosis) in 5-10 years; meanwhile, life-threatening complications of ESLD and HCC account for major mortality. An increasing burden of NAFLD in clinics, elucidation of its pathogenesis and progression, and assessment of the efficacy of potential therapeutics demand reliable animal models. Most NASH-associated HCC occurs in cirrhotic subjects; however, HCC does appear in NASH patients without cirrhosis. Lipotoxicity, oxidant stress, insulin resistance, endoplasmic reticulum stress, altered adipokine and lymphokine profiles and gut microbiome changes affect NAFLD progression and constitute key pathobiologic interplays. How these factors promote malignant transformation in a microenvironment of steatotic inflammation and fibrosis/cirrhosis, and lead to development of neoplasms is one of critical questions faced in the hepatology field. The present review summarizes the characteristics of emerging rodent NASH-HCC models, and discusses the challenges in utilizing these models to unveil the mysteries of NASH-associated HCC development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app