JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Rapid in vivo measurement of β-amyloid reveals biphasic clearance kinetics in an Alzheimer's mouse model.

Findings from genetic, animal model, and human studies support the observation that accumulation of the β-amyloid (Aβ) peptide in the brain plays a central role in the pathogenic cascade of Alzheimer's disease (AD). Human studies suggest that one key factor leading to accumulation is a defect in brain Aβ clearance. We have developed a novel microimmunoelectrode (MIE) to study the kinetics of Aβ clearance using an electrochemical approach. This is the first study using MIEs in vivo to measure rapid changes in Aβ levels in the brains of living mice. Extracellular, interstitial fluid (ISF) Aβ levels were measured in the hippocampus of APP/PS1 mice. Baseline levels of Aβ40 in the ISF are relatively stable and begin to decline within minutes of blocking Aβ production with a γ-secretase inhibitor. Pretreatment with a P-glycoprotein inhibitor, which blocks blood-brain barrier transport of Aβ, resulted in significant prolongation of Aβ40 half-life, but only in the latter phase of Aβ clearance from the ISF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app