Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

An optimized antibody-single-chain TRAIL fusion protein for cancer therapy.

MAbs 2016 July
Fusion proteins combining oligomeric assemblies of a genetically obtained single-chain (sc) variant of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with antibodies directed against tumor-associated antigens represent a promising strategy to overcome the limited therapeutic activity of conventional soluble TRAIL. To further improve the scTRAIL module in order to obtain a robust, thermostable molecule of high activity, we performed a comprehensive analysis of the minimal TNF homology domain (THD) and optimized linkers between the 3 TRAIL subunits constituting a scTRAIL. Through a stepwise mutagenesis of the N- and C-terminal region and the joining linker sequences, we generated bioactive scTRAIL molecules comprising a covalent linkage of the C-terminal Val280 and the N-terminal position 122 by only 2 amino acid residues in combination with conservative exchanges at positions 122 and 279. The increased thermal stability and solubility of such optimized scTRAIL molecules translated into increased bioactivity in the diabody-scTRAIL (Db-scTRAIL) format, exemplified here for an epidermal growth factor receptor-specific Db-scTRAIL. Additional modifications within the diabody linkers resulted in a fusion protein exerting high, target-dependent apoptosis induction in tumor cell lines in vitro and potent antitumor activity in vivo. Our results illustrate that protein engineering of scTRAIL and associated peptide linkers provides a promising strategy to develop antibody-scTRAIL fusion proteins as effective antitumor therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app