Add like
Add dislike
Add to saved papers

Clinical utility of urine neutrophil gelatinase-associated lipocalin measured at admission to predict outcomes in heterogeneous population of critically ill patients.

Urine neutrophil gelatinase-associated lipocalin (uNGAL) is a reliable early biomarker of acute kidney injury (AKI) in a homogeneous patient population. However, its utility in a heterogeneous population of critically ill, in whom the time of onset of renal insult is often unclear, is not clearly established. We evaluated the ability of a single measurement of uNGAL in a heterogeneous adult population, on admission to intensive care unit (ICU), to predict the occurrence of AKI and hospital mortality. One hundred and two consecutive adult patients had uNGAL measured within 8 h of admission to ICU. The demographic and laboratory data were collected at admission. The diagnosis of AKI was based on AKI Network (AKIN) criteria. The primary outcome was the development of AKI, and the secondary outcome was hospital mortality. The mean age was 54 ± 16.4 years and 65% were males. Urine NGAL (ng/ml) was 69 ± 42 in patients with AKI (n = 42) and 30.4 ± 41.7 in those without AKI (P < 0.001). The area under the receiver operating characteristic (ROC) curve for prediction of AKI was 0.79 and for serum creatinine (SCr) was 0.88. The sensitivity and specificity for a cut-off value of uNGAL of 75 ng/ml to predict AKI were 0.5 and 0.85 respectively. uNGAL > 75 ng/ml was a strong (odd ratio = 5.17, 95% confidence interval: 1.39-19.3) and independent predictor of hospital mortality. A single measurement of uNGAL at admission to ICU exhibited good predictive ability for AKI though the sensitivity was low. The predictive ability of uNGAL was inferior to simultaneously measured SCr at admission, hence limited its clinical utility to predict AKI. However, admission uNGAL was a strong, independent predictor of hospital mortality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app