Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In Silico Analysis of Green Tea Polyphenols as Inhibitors of AChE and BChE Enzymes in Alzheimer's Disease Treatment.

Alzheimer's disease (AD) is the most frequent cause of dementia, especially in the elderly. AD is the most common progressive neurodegenerative disorder, which involves the loss of structure and function of cholinergic neurons. Moreover, if these neuronal changes cannot be compensated, this may ultimately lead to neurodegenerative processes. Therefore, most of the drug therapies are based on the cholinergic hypothesis, which suggests that AD begins as a deficiency in the production of the neurotransmitter acetylcholine. In this context, many inhibitors play an important role in AD treatment among which acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) have more potential in the treatment process of AD. In this study, we selected tea polyphenols of green tea which are reported as AChE and BChE inhibitors used in the treatment of AD. The molecular docking results revealed that polyphenols exhibit interactions and inhibit by binding with AChE and BChE. The amount of energy to bind with AChE and BChE needed by Epigallocatechin-3-gallate was lowest at about -14.45 and -13.30 kcal/mol, respectively. All compounds showed binding energy values ranging between -14.45 to -9.75 kcal/mol for both types of enzymes. The present docking study suggests that tea polyphenols inhibit AChE as well as BChE and enhance the cholinergic neurotransmission by prolonging the time. However, AChE molecules remain in the synaptic cleft. In consideration to these findings, cholinesterase inhibitors are suggested as the standard drugs for the treatment of AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app