JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protective effects of Alpha-lipoic acid on MeHg-induced oxidative damage and intracellular Ca(2+) dyshomeostasis in primary cultured neurons.

Methylmercury (MeHg) is one of the ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. However, the mechanisms of MeHg-induced neuronal cell death are incompletely understood. Treatment of neuronal cells with MeHg (0-2 μM) for 0.5-12 h, or pretreated with LA (12.5-100 μM) for 0.5-6 h resulted in toxic effects of primary cultured neurons concentration- and time-dependently. For further experiments, 12.5, 25, and 50 μM of LA pretreatment for 3 h followed by 1 μM MeHg for 6 h were performed for the examination of the responses of neurons. Exposure of MeHg resulted in damages of neurons, which were shown by a loss of cell viability, and supported by high levels of lactate dehydrogenase (LDH) release, apoptosis, and morphological changes. In addition, neurons were sensitive to MeHg-mediated oxidative stress, a finding that is consistent with ROS over-production, leading to decrease Ca(2+)-ATPase activity and increase intracellular free calcium. Moreover, expressions of NMDA receptor subunits in neurons were down-regulated after MeHg exposure, and expression of NR2A mRNA and protein were much more sensitive to MeHg than those of NR1 and NR2B. On the contrary, pretreatment with LA presented a concentration-dependent prevention against MeHg-mediated cytotoxic effects of neurons. In conclusion, present results showed that oxidative stress and intracellular Ca(2+ )dyshomeostasis resulting from MeHg exposure contributed to neuronal injury. LA could attenuate MeHg-induced neuronal toxicity via its antioxidant properties in primary cultured neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app