Add like
Add dislike
Add to saved papers

Zinc Attenuates Tubulointerstitial Fibrosis in Diabetic Nephropathy Via Inhibition of HIF Through PI-3K Signaling.

Evidence has demonstrated that hypoxia may have a central pathogenic mechanism in the development of diabetic nephropathy (DN). Epithelial-to-mesenchymal transition (EMT) of mature tubular epithelial cells in kidney is a contributor to the renal accumulation of matrix protein in DN and is highly associated with the progression of tubulointerstitial fibrosis. Zinc (Zn) has anti-fibrosis effects in liver and lungs. In the present study, we aimed to investigate the effect of Zn on renal tubulointerstitial fibrosis especially under hypoxic conditions and its association with DN. We found that Zn treatment blockaded tubular EMT and attenuated renal tubulointerstitial fibrosis by downregulation of hypoxia-inducible factor alpha (HIF-1α) in the kidneys of diabetic streptozotocin-treated mice. High glucose (HG)/hypoxic conditions stimulated EMT in renal tubular cells as indicated by the significant decrease in epithelial marker E-cadherin and ZO-1 while the increase in mesenchymal markers α-smooth muscle actin (α-SMA). Zn supplement mainly prevented HG/hypoxic-induced HIF-1α accumulation and EMT marker changes. In co-treatment Zn with PI3K/Akt/GSK-3β signaling pathway, inhibitor LY294002 prevented HG/hypoxic-induced HIF-1α increase and EMT changes, suggesting that Zn may mediate HG/hypoxic-induced EMT through PI3K/Akt/GSK-3β pathway. Therefore, we concluded that Zn had an important anti-fibrosis role under HG/hypoxic conditions, and a novel mechanism contributing to Zn protection on renal tubular epithelial cells from HG/hypoxia-induced EMT through activation of PI3K/Akt/GSK-3β signaling pathway, which subsequently leads to the downregulation of the expression of HIF-1α.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app