JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effects of upper limb posture and a sub-maximal gripping task on corticospinal excitability to muscles of the forearm.

Variations in handgrip force influences shoulder muscle activity, and this effect is dependent upon upper limb position. Previous work suggests that neural coupling between proximal and distal muscles with changes in joint position is a possible mechanism but these studies tend to use artificially constrained postures that do not reflect activities of daily living. The purpose of this study was to examine the effects of upper limb posture on corticospinal excitability to the forearm muscles during workplace relevant arm positions. Motor evoked potentials (MEPs) were elicited in four forearm muscles via transcranial magnetic stimulation at six arm positions (45°, 90° and 120° of humeral elevation in both the flexion and abduction planes). MEPs were delivered as stimulus-response curves (SRCs) at rest and at constant intensity during two gripping tasks. Boltzmann plateau levels were smaller for the flexor carpi radialis in flexion at 45° versus 90° (p=0.0008). Extensor carpi radialis had a greater plateau during flexion than abduction (p=0.0042). Corticospinal excitability to the forearm muscles were influenced by upper limb posture during both the resting and gripping conditions. This provides further evidence that upper limb movements are controlled as a whole rather than segmentally and is relevant for workplace design considerations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app