Add like
Add dislike
Add to saved papers

Use of alpha-, beta-Estrogen Receptor as a "new tool" for detection of specific small molecule activity.

Cell-based screening methods for nuclear receptor ligands that use transgenic plant cells expressing a single human NR may have advantages over other eukaryotic systems which express multiple NRs. For example, signal-to-noise ratio might be improved because ligands would be less likely to bind to other NRs and/or less likely to cause confounding functional changes in plant cells. As a first step toward this aim we have expressed in plants truncated human estrogen receptor (ER) constructs linked to reporters, or selective markers such as luciferase, green fluorescent protein (GFP) and hygromycin. A variety of ligands for the ER (including estradiol and known phytoestrogens) have then been tested for their ability to over-express the linked marker gene(s) which could be measured (luciferase activity), visualized under fluorescent microscopy (GFP activity), or selected on antibiotic-containing media (Hygromycin B). Our results show a close association between the effects of ER ligands in the transgenic plant roots and their effects on native ERs in mammalian cells. With the stable expression of an ERalpha-GFP ligand detection system in A. thaliana, the estradiol- mediated response in transgenic roots is inhibited by an ER partial agonist (tamoxifen) and an antagonist (fulvestrant) at concentrations relevant to their use in breast cancer. We conclude that it is possible to express human NRs in plants in a form that can report on exogenous or endogenous ER ligands and that these constructs have a pharmacology which is relevant to ligands for the native NRs in human cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app