Add like
Add dislike
Add to saved papers

Vitamin D decreases adipocyte lipid storage and increases NAD-SIRT1 pathway in 3T3-L1 adipocytes.

Nutrition 2016 June
OBJECTIVE: Previous studies suggest that low vitamin D status is associated with obesity characterized by excess lipid storage in adipocytes. The aim of the present study was to determine the effects of the most hormonally active form of vitamin D 1,25-dihydroxyvitamin D [1,25(OH)2D] on adipocyte fat storage and lipid metabolism in mature 3T3-L1 cells.

METHODS: Differentiated 3T3-L1 cells were treated with various concentrations of 1,25(OH)2D. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation, intracellular lipid content, and basal and isoproterenol-stimulated lipolysis were measured to investigate the regulatory role of 1,25(OH)2D in adipocyte lipid metabolism. Reverse transcription polymerase chain reaction was performed to determine the effects of 1,25(OH)2D on adipogenesis-related markers, fatty acid oxidation-associated genes, and lipolytic enzymes. Sirtulin 1 (SIRT1) activity, nicotinamide adenine dinucleotide (NAD) and NADH were measured.

RESULTS: 1,25(OH)2D treatment (24 h, 100 nmol/L) induced a decrease in intracellular fat accumulation and an increase of basal and isoproterenol-stimulated lipolysis without cell toxicity in adipocytes. Adipogenic gene levels were decreased. In contrast, mRNA levels of β-oxidation-related genes, lipolytic enzymes, and vitamin D responsive gene were elevated by 1,25(OH)2D. Additionally, significant incremental changes in NAD levels, the ratio of NAD to NADH, and SIRT1 expression and activity were noted in 1,25(OH)2D-treated 3T3-L1 adipocytes.

CONCLUSIONS: The observed potent inhibitory effect of 1,25(OH)2D on adipocyte fat storage in mature 3T3-L1 cells suggests that vitamin D might improve adipocyte metabolic function and protect against obesity. Increased NAD concentrations and SIRT1 ​activity may play a role in the mechanism of 1,25(OH)2D action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app