Add like
Add dislike
Add to saved papers

Dosimetric effects of positioning shifts using 6D-frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy.

Dosimetric consequences of positional shifts were studied using frameless Brainlab ExacTrac X-ray system for hypofractionated (3 or 5 fractions) intracranial stereo-tactic radiotherapy (SRT). SRT treatments of 17 patients with metastatic intracranial tumors using the stereotactic system were retrospectively investigated. The treatments were simulated in a treatment planning system by modifying planning parameters with a matrix conversion technique based on positional shifts for initial infrared (IR)-based setup (XC: X-ray correction) and post-correction (XV: X-ray verification). The simulation was implemented with (a) 3D translational shifts only and (b) 6D translational and rotational shifts for dosimetric effects of angular correction. Mean translations and rotations (± 1 SD) of 77 fractions based on the initial IR setup (XC) were 0.51 ± 0.86 mm (lateral), 0.30 ± 1.55 mm (longitudinal), and -1.63 ± 1.00 mm (vertical); -0.53° ± 0.56° (pitch), 0.42° ± 0.60° (roll), and 0.44°± 0.90° (yaw), respectively. These were -0.07 ± 0.24 mm, -0.07 ± 0.25 mm, 0.06± 0.21 mm, 0.04° ± 0.23°, 0.00° ± 0.30°, and -0.02° ± 0.22°, respectively, for the postcorrection (XV). Substantial degradation of the treatment plans was observed in D95 of PTV (2.6% ± 3.3%; simulated treatment versus treatment planning), Dmin of PTV (13.4% ± 11.6%), and Dmin of CTV (2.8% ± 3.8%, with the maximum error of 10.0%) from XC, while dosimetrically negligible changes (< 0.1%) were detected for both CTV and PTV from XV simulation. 3D angular correction significantly improved CTV dose coverage when the total angular shifts (|pitch| + |roll| + |yaw|) were greater than 2°. With the 6D stereoscopic X-ray verification imaging and frameless immobilization, submillimeter and subdegree accuracy is achieved with negligible dosimetric deviations. 3D angular correction is required when the angular deviation is substantial. A CTV-to-PTV safety margin of 2 mm is large enough to prevent deterioration of CTV coverage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app