Add like
Add dislike
Add to saved papers

Identification of genes and signaling pathways associated with squamous cell carcinoma by bioinformatics analysis.

Oncology Letters 2016 Februrary
The present study aimed to investigate the genes and signaling pathways associated with squamous cell carcinoma (SCC) by bioinformatics analysis. For this purpose, the GSE2503 was downloaded from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) between 6 normal skin and 5 SCC samples were analyzed using the Linear Models for Microarray Data package. Gene Ontology (GO) and pathway enrichment analysis of DEGs were performed, followed by functional annotation and construction of a protein-protein interaction (PPI) network. Subnetwork modules were subsequently identified and analyzed. A total of 181 DEGs, including 95 upregulated and 86 downregulated DEGs, were identified, in addition to 20 GO biological processes terms enriched by upregulated DEGs and 14 enriched by downregulated DEGs. The upregulated DEGs were enriched in 18 pathways, and the downregulated DEGs were enriched in 7 pathways. Following functional annotation, three upregulated transcription factors (TFs), including hypoxia inducible factor 1, alpha subunit (HIF1A), and six downregulated TFs were identified. In the PPI network and subnetwork, matrix metallopeptidase 1 (MMP1), also known as interstitial collagenase, and interleukin 8 (IL8) were the hub genes with the highest degree of connectivity (degree =8). Integrin alpha (ITGA)6 and 2 were enriched in several pathways, including focal adhesion and extracellular matrix-receptor interaction. DEGs of SCC were primarily enriched in pathways associated with cancer and cell adhesion. Therefore, DEGs such as IL8, MMP1, HIF1A, ITGA6 and ITGA2 may be potential targets for the diagnosis and treatment of SCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app