Add like
Add dislike
Add to saved papers

Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves.

In this study, batch removal of hexavalent chromium from aqueous solutions by powdered Colocasia esculenta leaves was investigated. Batch experiments were conducted to study the effects of adsorption of Cr(VI) at different pH values, initial concentrations, agitation speeds, temperatures, and contact times. The biosorbent was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectrometer analysis. The biosorptive capacity of the adsorbent was dependent on the pH of the chromium solution in which maximum removal was observed at pH 2. The adsorption equilibrium data were evaluated for various adsorption isotherm models, kinetic models, and thermodynamics. The equilibrium data fitted well with Freundlich and Halsey models. The adsorption capacity calculated was 47.62 mg/g at pH 2. The adsorption kinetic data were best described by pseudo-second-order kinetic model. Thus, Colocasia esculenta leaves can be considered as one of the efficient and cheap biosorbents for hexavalent chromium removal from aqueous solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app