Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer.

Nanoscale 2016 Februrary 29
The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app