Add like
Add dislike
Add to saved papers

Association of Biofilm Formation, Psl Exopolysaccharide Expression, and Clinical Outcomes in Pseudomonas aeruginosa Keratitis: Analysis of Isolates in the Steroids for Corneal Ulcers Trial.

IMPORTANCE: Bacterial virulence factors are increasingly recognized as important in the understanding of clinical infections.

OBJECTIVE: To determine whether 2 potential virulence factors, in vitro biofilm formation and Psl exopolysaccharide (EPS) expression, influence clinical presentation or outcomes in Pseudomonas aeruginosa keratitis.

DESIGN, SETTING, AND PARTICIPANTS: Laboratory investigation using P aeruginosa clinical isolates from the double-blind Steroids for Corneal Ulcers Trial (SCUT), which included patients at Aravind Eye Hospital, Proctor Foundation, University of California, San Francisco, and Dartmouth-Hitchcock Medical Center. SCUT was conducted from September 1, 2006, through February 22, 2010. All data used in this study were obtained during this period. Pseudomonas aeruginosa clinical isolates from SCUT were evaluated for in vitro biofilm formation, and Psl EPS expression was assessed using an anti-Psl monoclonal antibody (mAb) enzyme-linked immunosorbent assay. Planktonic growth kinetics and the susceptibility to anti-Psl mAb-mediated opsonophagocytic killing (OPK) were also evaluated in a subset of isolates. Linear regression assessed associations between SCUT patients' visual acuity and their corresponding biofilm formation and Psl EPS expression. Generalized estimating equation regression models were used to assess whether the change in visual acuity among SCUT patients was associated with Psl EPS expression or biofilm formation.

MAIN OUTCOMES AND MEASURES: Biofilm formation, Psl production, OPK, and visual acuity.

RESULTS: The P aeruginosa SCUT strains produced a mean (SD) in vitro biofilm score of 1.06 (0.32) (range 0.17-2.12). A 1-unit increase in biofilm was associated with a worse visual acuity of 2 lines measured in SCUT patients at baseline (0.20 logMAR; 95% CI, -0.03 to 0.44; P = .09) and 3 months (0.21 logMAR; 95% CI, 0.003 to 0.44; P = .047). Of 101 confirmed P aeruginosa SCUT isolates, 100 expressed Psl EPSs. In addition, all Psl-positive strains evaluated in the OPK assay were susceptible to anti-Psl mAb-mediated OPK.

CONCLUSIONS AND RELEVANCE: The ability of P aeruginosa keratitis isolates to form biofilms in vitro was correlated with worse vision at presentation and after 3 months in SCUT. Ninety-nine percent of P aeruginosa keratitis isolates from SCUT produced Psl EPSs, and 100% of these evaluated Psl-positive isolates were susceptible to anti-Psl mAb-mediated OPK. These data indicate that biofilm formation and Psl EPSs may be candidate targets for novel therapeutics against P aeruginosa keratitis.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app