JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An insight into insulin-like factor 3 regulate its receptor RXFP2 in mouse gubernaculum testis cells.

The etiology of testicular dysgenesis syndrome is multifactorial and involves abnormalities in the anatomical structures and endocrine factors. Several studies have shown that the abnormal development of the gubernaculum may affect testicular descent, and the insulin-like factor 3 (INSL3) appears to play an important role in development of the gubernaculum have been proved. INSL3 binds its specific receptor (Relaxin family peptide 2, RXFP2), which was highly expressed in gubernaculum, to produce a crucial effect in the first transabdominal descent stage, but its mechanism still remain unclear. In this study, in order to explore how does INSL3 regulate its receptor RXFP2, we cultured mouse gubernaculum testis cells in vitro, which was treated by INSL3, and examined the expression of RXFP2 in mouse gubernaculum testis cells. The results displayed that INSL3 changed RXFP2 expression, and we found that low dose INSL3 can increase RXFP2 expression, the mechanism of above-mentioned might be related with the hormesis of INSL3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app