JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Novel Pedestrian Navigation Algorithm for a Foot-Mounted Inertial-Sensor-Based System.

Sensors 2016
This paper proposes a novel zero velocity update (ZUPT) method for a foot-mounted pedestrian navigation system (PNS). First, the error model of the PNS is developed and a Kalman filter is built based on the error model. Second, a novel zero velocity detection algorithm based on the variations in speed over a gait cycle is proposed. A finite state machine including three states is employed to model a gait cycle. The state transition conditions are determined based on speed using a sliding window. Third, the ZUPT software flow is illustrated and described. Finally, the performances of the proposed method and other methods are examined and compared experimentally. The experimental results show that the mean relative accuracy of the proposed method is 0.89% under various motion modes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app