Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

COX-1 and COX-2 polymorphisms in susceptibility to cerebral palsy in very preterm infants.

Cerebral palsy (CP) is a nonprogressive motor disorder caused by white matter damage in the developing brain. Recent epidemiological and clinical data suggest intrauterine infection/inflammation as the most common cause of preterm delivery and neonatal complications, including CP. Cyclooxygenases are key enzymes in the conversion of arachidonic acid to prostaglandins. The COX family consists of two isoforms, COX-1 and COX-2. In the brain, COX-2 is constitutively expressed at high levels on pyramidal neurons, while COX-1 is predominantly expressed by microglia and can be upregulated in pathological conditions, such as infection, ischemia and traumatic brain injury. Single nucleotide polymorphisms in the COX-1 and COX-2 gene could have profound effects on COX-1 and COX-2 expression and, directly or indirectly, influence the pathogenesis, development and severity of CP. In this study we investigated the association between single nucleotide polymorphisms of the COX-1 and COX-2 gene and susceptibility to cerebral palsy in very preterm infants. The results of our study showed the association between COX-1 high expression genotype (-842 AA) and COX-1 high expression allele -842A and risk of CP in infants with cystic periventricular leucomalacia (cPVL). Our results support an important role of COX-1 enzyme on microglial activation during neuroinflammation resulting in huge neuroinflammatory response and the proinflammatory mediator overproduction, with the serious white matter damage and CP development as a consequence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app