Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bisdemethoxycurcumin Inhibits Adipogenesis in 3T3-L1 Preadipocytes and Suppresses Obesity in High-Fat Diet-Fed C57BL/6 Mice.

Obesity is caused by excessive accumulation of body fat and is closely related to complex metabolic diseases. Adipogenesis is a key process that is required in adipocyte hypertrophy in the development of obesity. Curcumin (Cur) has been reported to inhibit adipocyte differentiation, but the inhibitory effects of other curcuminoids present in turmeric, such as demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), on adipogenesis have not been investigated. Here, we investigated the effects of curcuminoids on adipogenesis and the molecular mechanisms of adipocyte differentiation. Among three curcuminoids, BDMC was the most effective suppressor of lipid accumulation in adipocytes. BDMC suppressed adipogenesis in the early stage primarily through attenuation of mitotic clonal expansion (MCE). In BDMC-treated preadipocytes, cell cycle arrest at the G0/G1 phase was found after initiation of adipogenesis and was accompanied by downregulation of cyclin A, cyclin B, p21, and mitogen-activated protein kinase (MAPK) signaling. The protein levels of the adipogenic transcription factors peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding proteins (C/EBP)α were also reduced by BDMC treatment. Furthermore, 0.5% dietary BDMC (w/w) significantly lowered body weight gain and adipose tissue mass in high-fat diet (HFD)-fed mice. The results of H&E staining showed that dietary BDMC reduced hypertrophy in adipocytes. These results demonstrate for the first time that BDMC suppressed adipogenesis in 3T3-L1 adipocytes and prevented HFD-induced obesity. Our results suggest that BDMC has the potential to prevent obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app