Journal Article
Review
Add like
Add dislike
Add to saved papers

Bone mineral density aspects in the femoral neck of hip fracture patients.

Injury 2016 January
Elderly people, due to neurological conditions and muscular atrophy, present a greater propensity to falls and thus are very susceptible to hip fractures. Other variables, such as osteoporosis, may also be related to the etiopathogenesis of hip fractures, although osteoporosis is in fact a concurrent disease, and merely a coadjutant cause. Nonetheless, osteoporosis can make fracture patterns more severe and interfere with osteosynthesis. Osteoporosis is the radiological image of osteopenia, a pathological concept meaning a smaller quantity of bone per unit of volume. The radiological expression of osteopenia is therefore that of bone tissue with a lower radiological density than normal. In the context of hip fractures, bone mineral density and bone architecture of the femoral neck together with protein expression profiles and cross-links of this anatomical area are of special interest which is reviewed in the current paper. Spatial variations in bone mineral density in the femoral neck were found in the literature with increased porosity from the periosteal to the endosteal region and also from the distal to the proximal part of the femoral neck. Furthermore, increased crystal size, increased cortical porosity, reduced osteocyte lacunar density and an increased Ca/P ratio associated with higher concentrations of Ca and P were described in hip fracture patients compared to control patients. Osteocalcin/collagen type 1 expression ratio and enzymatic cross-link content in high-density bone was found to be significantly lower in hip fractures compared to controls. In conclusion, further research in bone mineral density and associated parameters are of interest to deepen the understanding of osteoporotic hip fractures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app