JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Anatomy of the Akhmediev breather: Cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence.

By invoking Bogoliubov's spectrum, we show that for the nonlinear Schrödinger equation, the modulation instability (MI) of its n=1 Fourier mode on a finite background automatically triggers a further cascading instability, forcing all the higher modes to grow exponentially in locked step with the n=1 mode. This fundamental insight, the enslavement of all higher modes to the n=1 mode, explains the formation of a triangular-shaped spectrum that generates the Akhmediev breather, predicts its formation time analytically from the initial modulation amplitude, and shows that the Fermi-Pasta-Ulam (FPU) recurrence is just a matter of energy conservation with a period twice the breather's formation time. For higher-order MI with more than one initial unstable mode, while most evolutions are expected to be chaotic, we show that it is possible to have isolated cases of "super-recurrence," where the FPU period is much longer than that of a single unstable mode.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app