Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to n-Propanol.

The reduction of carbon dioxide (CO2) to n-propanol (CH3CH2CH2OH) using renewable electricity is a potentially sustainable route to the production of this valuable engine fuel. In this study, we report that agglomerates of ∼15 nm sized copper nanocrystals exhibited unprecedented catalytic activity for this electrochemical reaction in aqueous 0.1 M KHCO3. The onset potential for the formation of n-propanol was 200-300 mV more positive than for an electropolished Cu surface or Cu(0) nanoparticles. At -0.95 V (vs RHE), n-propanol was formed on the Cu nanocrystals with a high current density (jn-propanol) of -1.74 mA/cm(2), which is ∼25× larger than that found on Cu(0) nanoparticles at the same applied potential. The Cu nanocrystals were also catalytically stable for at least 6 h, and only 14% deactivation was observed after 12 h of CO2 reduction. Mechanistic studies suggest that n-propanol could be formed through the C-C coupling of carbon monoxide and ethylene precursors. The enhanced activity of the Cu nanocrystals toward n-propanol formation was correlated to their surface population of defect sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app