JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Regional and Temporal Population Structure of Pseudoperonospora cubensis in Michigan and Ontario.

Phytopathology 2016 April
Cucurbit downy mildew (CDM), caused by the oomycete pathogen Pseudoperonospora cubensis, is a devastating disease that affects cucurbit species worldwide. This obligate, wind-dispersed pathogen does not overwinter in Michigan or other northern regions and new isolates can enter the state throughout the growing season. To evaluate the regional and temporal population structure of P. cubensis, sporangia from CDM lesions were collected from cucurbit foliage grown in Michigan and Ontario field locations in 2011. Population structure and genetic diversity were assessed in 257 isolates using nine simple sequence repeat markers. Genetic diversity was high for isolates from Michigan and Canada (0.6627 and 0.6131, respectively). Five genetic clusters were detected and changes in population structure varied by site and sampling date within a growing season. The Michigan and Canada populations were significantly differentiated, and a unique genetic cluster was detected in Michigan.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app