JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Kaiso, a transcriptional repressor, promotes cell migration and invasion of prostate cancer cells through regulation of miR-31 expression.

Oncotarget 2016 Februrary 3
Kaiso, a member of the BTB/POZ zinc finger protein family, functions as a transcriptional repressor by binding to sequence-specific Kaiso binding sites or to methyl-CpG dinucleotides. Previously, we demonstrated that Kaiso overexpression and nuclear localization correlated with the progression of prostate cancer (PCa). Therefore, our objective was to explore the molecular mechanisms underlying Kaiso-mediated PCa progression. Comparative analysis of miRNA arrays revealed that 13 miRNAs were significantly altered (> 1.5 fold, p < 0.05) in sh-Kaiso PC-3 compared to sh-Scr control cells. Real-time PCR validated that three miRNAs (9, 31, 636) were increased in sh-Kaiso cells similar to cells treated with 5-aza-2'-deoxycytidine. miR-31 expression negatively correlated with Kaiso expression and with methylation of the miR-31 promoter in a panel of PCa cell lines. ChIP assays revealed that Kaiso binds directly to the miR-31 promoter in a methylation-dependent manner. Over-expression of miR-31 decreased cell proliferation, migration and invasiveness of PC-3 cells, whereas cells transfected with anti-miR-31 restored proliferation, migration and invasiveness of sh-Kaiso PC-3 cells. In PCa patients, Kaiso high/miR-31 low expression correlated with worse overall survival relative to each marker individually. In conclusion, these results demonstrate that Kaiso promotes cell migration and invasiveness through regulation of miR-31 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app