JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Photoelectrochemical Water Splitting System--A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy.

Fast charge transfer kinetics at the photoelectrode/electrolyte interface is critical for efficient photoelectrochemical (PEC) water splitting system. Thus, far, a measurement of kinetics constants for such processes is limited. In this study, scanning electrochemical microscopy (SECM) is employed to investigate the charge transfer kinetics at the photoelectrode/electrolyte interface in the feedback mode in order to simulate the oxygen evolution process in PEC system. The popular photocatalysts BiVO4 and Mo doped BiVO4 (labeled as Mo:BiVO4) are selected as photoanodes and the common redox couple [Fe(CN)6](3-)/[Fe(CN)6](4-) as molecular probe. SECM characterization can directly reveal the surface catalytic reaction kinetics constant of 9.30 × 10(7) mol(-1) cm(3) s(-1) for the BiVO4. Furthermore, we find that after excitation, the ratio of rate constant for photogenerated hole to electron via Mo:BiVO4 reacting with mediator at the electrode/electrolyte interface is about 30 times larger than that of BiVO4. This suggests that introduction of Mo(6+) ion into BiVO4 can possibly facilitate solar to oxygen evolution (hole involved process) and suppress the interfacial back reaction (electron involved process) at photoanode/electrolyte interface. Therefore, the SECM measurement allows us to make a comprehensive analysis of interfacial charge transfer kinetics in PEC system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app