Distributions and potential sources of polycyclic aromatic hydrocarbons in surface sediments from an emerging industrial city (Xinxiang)
Jinglan Feng, Nannan Xi, Fei Zhang, Jiahui Zhao, Pengtuan Hu, Jianhui Sun
Environmental Monitoring and Assessment 2016, 188 (1): 61
26714501
To investigate the distributions, degree, and possible sources of polycyclic aromatic hydrocarbons (PAHs) in bed sediments from four rivers of Xinxiang, 18 sediment samples were analyzed. The concentrations ranged from 4.45 × 10(3) to 29.0 × 10(3) ng/g for ∑15PAHs (sum of US Environmental Protection Agency (EPA) priority PAHs apart from naphthalene (Nap)) and 3.37 × 10(3) to 23.5 × 10(3) ng/g for ∑7carPAHs (including benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DBA), and indeno[1,2,3-cd]pyrene (InP)) with average concentrations of 10.7 × 10(3) and 7.99 × 10(3) ng/g, respectively. Compared with those from other rivers in China, sediments from four rivers of Xinxiang were severely polluted with PAHs. Pearson correlation analysis showed that ∑15PAHs concentrations had a significant positive correlation with black carbon content. Four- to six-ring PAHs accounted for 83.4 % of total PAHs, which indicated that the main source of PAHs in the studied area could be pyrogenic contamination. Source apportionment using PCA/MLR and UNMIX revealed that coal and biomass combustion contributed 64.4-67.1 %, gasoline vehicle 23.2-27.2 %, and diesel vehicle 5.70-12.4 % of the total PAHs, respectively. The effects range low/effects range median (ERL/ERM) values showed that there was a high level of toxicity risk for BaA. The ecological risk assessment by mean effects range median quotients (mERMQ) revealed a medium ecological risk of ∑15PAHs in sediments from four rivers of Xinxiang, manifesting that a close attention should be paid to pollution of PAHs in the studied area.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.