JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neuropeptide Y stimulates osteoblastic differentiation and VEGF expression of bone marrow mesenchymal stem cells related to canonical Wnt signaling activating in vitro.

Neuropeptides 2016 April
Neuropeptide Y (NPY) is a neuropeptide secreted by sensory nerve fibers distributed in the marrow and vascular canals of bone tissue. However, the effect of NPY on the osteogenic ability of bone marrow mesenchymal stem cells (BMSCs) remains controversial and has not been thoroughly investigated. To explore the osteogenic activity and the migration and VEGF expression capabilities of BMSCs affected by NPY, as well as the underlying mechanisms, we investigated the potential relationships among NPY, osteoblastic differentiation, angiogenesis and canonical Wnt signaling in BMSCs. NPY was observed to regulate osteoblastic differentiation at concentrations ranging from 10(-8) to 10(-12)mol/L, and the effects of NPY on the levels of Wnt signaling proteins were detected using Western blotting. To unravel the underlying mechanism, BMSCs were treated with NPY after pretreatment with the NPY-1R antagonist PD160170 or the Wnt pathway antagonist DKK1, and gene expression levels of Wnt signaling molecules and osteoblastic markers were determined by qPCR. Our results indicated that NPY significantly promoted osteoblastic differentiation of BMSCs in a concentration-dependent manner and up-regulated the expression levels of proteins including β-catenin and p-GSK-3β and the mRNA level of β-catenin. Moreover, NPY promoted the translocation of β-catenin into nucleus. The effects of NPY were inhibited by PD160170 or DKK1. Additionally, NPY enhanced the ability of BMSCs to migrate and promoted the expression of vascular endothelial growth factor (VEGF) as measured by immunocytochemical staining, qPCR and Western blot. These results suggested that NPY may stimulate osteoblastic differentiation via activating canonical Wnt signaling and enhance the angiogenic capacity of BMSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app