Add like
Add dislike
Add to saved papers

Calreticulin acts as an adjuvant to promote dendritic cell maturation and enhances antigen-specific cytotoxic T lymphocyte responses against non-small cell lung cancer cells.

Cellular Immunology 2016 Februrary
Dendritic cell (DC)-based immunotherapy has promising for treatment of non-small cell lung cancer (NSCLC). Melanoma-associated antigen 3 (MAGE-A3) is a tumor-specific antigen and expressed in approximately 35-40% of NSCLC tissues. Calreticulin (CALR) is a protein chaperone and can enhance DC maturation and antigen presentation. In this study, we evaluated the adjuvant activity of CALR in human DC maturation and their capacity to induce MAGE-A3-specific CD8+ cytotoxic T lymphocyte (CTL) responses to NSCLC in vitro. Infection with recombinant Ad-CALR and/or Ad-MAGE-A3, but not with control Ads, induced CALR and/or MAGE-A3 expression in DCs. Infection with Ad-CALR significantly increased the percentages of CD80+, CD83+, CD86+ and HLA-DR+ DCs and IL-12 secretion, but reduced IL-10 production in DCs. Co-culture of autologous lymphocytes with DC-Ad-CALR or DC-Ad-CM significantly increased the numbers of induced CD8+ CTLs. The percentages of IFNγ-secreting CTLs responding to SK-LU-1 and NCI-H522 NSCLC, but not to non-tumor NL-20 cells in Ad-C-CTL, Ad-M-CTL and Ad-CM-CTL were significantly higher than that of DC-CTL and Ad-null-CTL. Ad-C-CTL, Ad-M-CTL and Ad-CM-CTL, but not control DC-CTL and Ad-null-CTL, induced higher frequency of MAGE-A3+HLA-A2+ NCI-H-522 cell apoptosis, but did not affect the survival of MAGE-A3+HLA-A2- SK-LU-1 and non-tumor NL20 cells in vitro. Treatment with anti-HLA-I antibody, but not with anti-HLA-II, dramatically diminished the cytotoxicity of Ad-CM-CTLs against NCI-H522 cells. Our data indicated that CALR acted as an adjuvant to promote DC maturation, which induced CTL development and enhanced MAGE-A3-specific CTL cytotoxicity against NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app