Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A method for accurate pH mapping with chemical exchange saturation transfer (CEST) MRI.

Chemical exchange saturation transfer (CEST) MRI holds enormous promise for imaging pH. Whereas the routine CEST-weighted MRI contrast is complex and susceptible to confounding factors such as labile proton ratio, chemical shift, bulk water relaxation and RF saturation, ratiometric CEST imaging simplifies pH determination. However, the conventional ratiometric CEST (RCEST) MRI approach is limited to CEST agents with multiple exchangeable groups. To address this limitation, RF power-based ratiometric CEST (PRCEST) imaging has been proposed that ratios CEST effects obtained under different RF power levels. Nevertheless, due to concomitant RF saturation (spillover) effect, the recently proposed PRCEST imaging is somewhat dependent on parameters including bulk water relaxation time and chemical shift. Herein we hypothesized that RF power-based ratiometric analysis of RF spillover effect-corrected inverse CEST asymmetry (PRICEST) provides enhanced pH measurement. The postulation was verified numerically, and validated experimentally using an in vitro phantom. Briefly, our study showed that the difference between MRI-determined pH (pHMRI ) and electrode-measured pH being 0.12 ± 0.13 and 0.04 ± 0.03 for PRCEST and PRICEST imaging, respectively, and the newly proposed PRICEST imaging provides significantly more accurate pH determination than PRCEST imaging (P < 0.01, Wilcoxon signed-rank test). Notably, the exchange rate shows dominantly base-catalysed relationship with pH, independent of creatine concentration (P > 0.10, Analysis of Covariance). In addition, the derived labile proton ratio linearly scales with creatine concentration (P < 0.01, Pearson Regression). To summarize, PRICEST MRI provides concentration-independent pH imaging, augmenting prior quantitative CEST methods for accurate pH mapping. Copyright © 2015 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app