Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M).

OBJECTIVES: Tigecycline represents one of the last-line therapeutics to combat multidrug-resistant bacterial pathogens, including VRE and MRSA. The German National Reference Centre for Staphylococci and Enterococci has received 73 tigecycline-resistant Enterococcus faecium and Enterococcus faecalis isolates in recent years. The precise mechanism of how enterococci become resistant to tigecycline remains undetermined. This study documents an analysis of the role of efflux pumps in tigecycline resistance in clinical isolates of Enterococcus spp.

METHODS: Various tigecycline MICs were found for the different isolates analysed. Tigecycline-resistant strains were analysed with respect to genome and transcriptome differences by means of WGS and RT-qPCR. Genes of interest were cloned and expressed in Listeria monocytogenes for verification of their functionality.

RESULTS: Detailed comparative whole-genome analyses of three isogenic strains, showing different levels of tigecycline resistance, revealed the major facilitator superfamily (MFS) efflux pump TetL and the ribosomal protection protein TetM as possible drug resistance proteins. Subsequent RT-qPCR confirmed up-regulation of the respective genes. A correlation of gene copy number and level of MIC was inferred from further qPCR analyses. Expression of both tet(L) and tet(M) in L. monocytogenes unequivocally demonstrated the potential to increase tigecycline MICs upon acquisition of either locus.

CONCLUSIONS: Our results indicate that increased expression of two tetracycline resistance determinants, a tet(L)-encoded MFS pump and a tet(M)-encoded ribosomal protection protein, is capable of conferring tigecycline resistance in enterococcal clinical isolates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app