Regulator of G-Protein Signaling 5 Prevents Smooth Muscle Cell Proliferation and Attenuates Neointima Formation

Jan-Marcus Daniel, André Prock, Jochen Dutzmann, Kristina Sonnenschein, Thomas Thum, Johann Bauersachs, Daniel G Sedding
Arteriosclerosis, Thrombosis, and Vascular Biology 2016, 36 (2): 317-27

OBJECTIVE: Regulator of G-protein signaling 5 (RGS5) is abundantly expressed in vascular smooth muscle cells (SMCs) and inhibits G-protein signaling by enhancing the guanosine triphosphate-hydrolyzing activity of Gα-subunits. In the present study, we investigated the effects of RGS5 on vascular SMC function in vitro and neointima formation after wire-induced injury in mice and determined the underlying mechanisms.

APPROACH AND RESULTS: We found a robust expression of RGS5 in native arteries of C57BL/6 mice and a highly significant downregulation within neointimal lesions 10 and 21 days after vascular injury as assessed by quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. In vitro, RGS5 was found significantly downregulated after mitogenic stimulation of human coronary artery SMCs. To restore RGS5 levels, SMCs were transduced with adenoviral vectors encoding wild-type RGS5 or a nondegradable mutant. RGS5-WT and, even more prominently, the C2A-RGS5 mutant prevented SMC proliferation and migration. In contrast, the siRNA-mediated knockdown of RGS5 significantly augmented SMC proliferation. Following overexpression of RGS5, fluorescence-activated cell sorting analysis of propidium iodide-stained cells indicated cell cycle arrest in G0/G1 phase. Mechanistically, inhibition of the phosphorylation of the extracellular signal-regulated kinase 1/2 and mitogen-activated protein kinase downstream signaling was shown to be responsible for the anti-proliferative effect of RGS5. Following wire-induced injury of the femoral artery in C57BL/6 mice, adenoviral-mediated overexpression of RGS5-WT or C2A-RGS5 significantly reduced SMC proliferation and neointima formation in vivo.

CONCLUSIONS: Downregulation of RGS5 is an important prerequisite for SMC proliferation in vitro and in vivo. Therefore, reconstitution of RGS5 levels represents a promising therapeutic option to prevent vascular remodeling processes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"