We have located links that may give you full text access.
Greater vertical impact loading in female runners with medically diagnosed injuries: a prospective investigation.
British Journal of Sports Medicine 2016 July
BACKGROUND: Running has been critical to human survival. Therefore, the high rate of injuries experienced by modern day runners is puzzling. Landing on the heel, as most modern day shod runners do, results in a distinct vertical impact force that has been shown to be associated with running-related injuries. However, these injury studies were retrospective in nature and do not establish cause and effect.
OBJECTIVE: To determine whether runners with high impacts are at greater risk for developing medically diagnosed injuries.
METHODS: 249 female runners underwent a gait analysis to measure vertical instantaneous loading rate, vertical average loading rate (VALR), vertical impact peak (VIP) and peak vertical force. Participants then recorded their mileage and any running-related injuries monthly in a web-based, database programme. Variables were first compared between the entire injured (INJ; n=144) and uninjured (n=105) groups. However, the focus of this study was on those injured runners seeking medical attention (n=103) and those who had never injured (n=21).
RESULTS: There were no differences between the entire group of injured and uninjured groups. However, all impact-related variables were higher in those with medically diagnosed injuries compared with those who had never been injured. (effect size (ES) 0.4-0.59). When VALR was >66.0 body weight (BW)/s, the odds of being DX_INJ were 2.72 (95% CI 1.0 to 7.4). Impact loading was associated with bony and soft-tissue injuries.
CONCLUSIONS: Vertical average loading rate was lower in female runners classified as 'never injured' compared with those who had been injured and sought medical attention.
OBJECTIVE: To determine whether runners with high impacts are at greater risk for developing medically diagnosed injuries.
METHODS: 249 female runners underwent a gait analysis to measure vertical instantaneous loading rate, vertical average loading rate (VALR), vertical impact peak (VIP) and peak vertical force. Participants then recorded their mileage and any running-related injuries monthly in a web-based, database programme. Variables were first compared between the entire injured (INJ; n=144) and uninjured (n=105) groups. However, the focus of this study was on those injured runners seeking medical attention (n=103) and those who had never injured (n=21).
RESULTS: There were no differences between the entire group of injured and uninjured groups. However, all impact-related variables were higher in those with medically diagnosed injuries compared with those who had never been injured. (effect size (ES) 0.4-0.59). When VALR was >66.0 body weight (BW)/s, the odds of being DX_INJ were 2.72 (95% CI 1.0 to 7.4). Impact loading was associated with bony and soft-tissue injuries.
CONCLUSIONS: Vertical average loading rate was lower in female runners classified as 'never injured' compared with those who had been injured and sought medical attention.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app