JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural insights into the synthesis of FMN in prokaryotic organisms.

Riboflavin kinases (RFKs) catalyse the phosphorylation of riboflavin to produce FMN. In most bacteria this activity is catalysed by the C-terminal module of a bifunctional enzyme, FAD synthetase (FADS), which also catalyses the transformation of FMN into FAD through its N-terminal FMN adenylyltransferase (FMNAT) module. The RFK module of FADS is a homologue of eukaryotic monofunctional RFKs, while the FMNAT module lacks homologyto eukaryotic enzymes involved in FAD production. Previously, the crystal structure of Corynebacterium ammoniagenes FADS (CaFADS) was determined in its apo form. This structure predicted a dimer-of-trimers organization with the catalytic sites of two modules of neighbouring protomers approaching each other, leading to a hypothesis about the possibility of FMN channelling in the oligomeric protein. Here, two crystal structures of the individually expressed RFK module of CaFADS in complex with the products of the reaction, FMN and ADP, are presented. Structures are complemented with computational simulations, binding studies and kinetic characterization. Binding of ligands triggers dramatic structural changes in the RFK module, which affect large portions of the protein. Substrate inhibition and molecular-dynamics simulations allowed the conformational changes that take place along the RFK catalytic cycle to be established. The influence of these conformational changes in the FMNAT module is also discussed in the context of the full-length CaFADS protomer and the quaternary organization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app