Add like
Add dislike
Add to saved papers

Effect of adipose-derived stem cell-conditioned medium on the proliferation and migration of B16 melanoma cells.

Oncology Letters 2015 August
Adipose-derived stem cells (ASCs) are a population of cells derived from adipose tissue. ASCs exhibit multilineage development potential and are able to secrete various factors, which influence adjacent cells. Previous studies have reported the effectiveness of ASC-conditioned medium (ASC-CM) in wound healing, anti-melanogenesis, wrinkle improvement and hair growth. In the present study, the anticancer function of ASC-CM was investigated in vitro and in vivo. An MTT assay revealed that ASC-CM significantly decreased the proliferation of B16 melanoma cells in a time- and dose-dependent manner (P<0.01). Cell cycle analysis indicated that ASC-CM significantly increased the number of cells in G1 phase while reducing the number of cells in the S and G2/M phases (P<0.01). Furthermore, a wound migration model demonstrated that ASC-CM treatment significantly decreased the migration ability of B16 melanoma cells (P<0.01). In addition, C57BL/6 mice were administered with a single intratumoral injection of ASC-CM, daily or every other day, and a significant reduction in the volume of the tumor mass was observed compared with that of the control group (P<0.01). Thus, the findings of the present study indicated that ASC-CM has an anti-tumorigenic effect on B16 melanoma cells in vitro and in vivo, and may potentially be used to support the treatment of melanoma in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app