JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Analysis of Mitochondrial DNA in Induced Pluripotent and Embryonic Stem Cells.

The mitochondrial genome has a major role to play in establishing and maintaining pluripotency. Furthermore, mitochondrial DNA (mtDNA) copy is strictly regulated during differentiation. Undifferentiated, pluripotent cells possess fewer than 300 copies of mtDNA, which establishes the mtDNA set point and promotes cell proliferation and, as a result, these cells rely on glycolysis with some support from oxidative phosphorylation (OXPHOS) for the generation of ATP. The mtDNA set point provides the starting point from which cells increase their mtDNA copy number as they differentiate into mature functional cells. Dependent on cell types, mtDNA copy number ranges from ~10 copies in sperm to several thousand in cardiomyocytes. Consequently, differentiating cell types can acquire the appropriate numbers of mtDNA copy to meet their specific requirements for ATP generated through OXPHOS. However, as reprogrammed somatic cells do not always achieve this, it is essential to analyze them for their OXPHOS potential and ability to regulate mtDNA copy number. Here, we describe how to assess mtDNA copy number in pluripotent and differentiating cells using real-time PCR protocols; assess expression of the mtDNA specific replication factors through real-time RT-PCR; identify mtDNA variants in embryonic and induced pluripotent stem cells; determine DNA methylation patterns of the mtDNA-specific replication factors; and assess mitochondrial OXPHOS capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app