JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy.

Nanoscale 2015 December 29
Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe(2)) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, FeSe(2) nanoparticles were synthesized by a simple solution-phase method. After modification with polyethylene glycol (PEG), the obtained FeSe(2)-PEG nanoparticles showed high stability under various physiological conditions. FeSe(2)-PEG could serve as a T2-weighted magnetic resonance (MR) imaging contrast agent because of its strong superparamagnetic properties, with its r(2) relaxivity determined to be 133.38 mM(-1) S(-1), a value higher than that of the clinically used Feridex. On the other hand, with high absorbance in the near-infrared (NIR) region, FeSe(2)-PEG also appeared to be a useful contrast agent for photoacoustic imaging (PA) as well as an effective photothermal agent for PTT cancer treatment, as demonstrated in our animal tumor model experiments. Moreover, long-term toxicity tests have proven that FeSe(2)-PEG nanoparticles after systematic administration rendered no appreciable toxicity to the treated animals, and could be gradually excreted from the major organs of mice. Our work indicates that FeSe(2)-PEG nanoparticles would be a new class of theranostic agents promising for application in bioimaging and cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app