JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression.

Multiple genetic variants have been linked to risk of Parkinson disease (PD), but known mutations do not explain a large proportion of the total PD cases. Similarly, multiple loci have been associated with PD risk by genome-wide association studies (GWAS). The influence that genetic factors confer on phenotypic diversity remains unclear. Few studies have been performed to determine whether the GWAS loci are also associated with age at onset (AAO) or motor progression. We used 2 PD case-control data sets (Washington University and the Parkinson's Progression Markers Initiative) to determine whether polymorphisms located at the GWAS top hits (GBA, ACMSD/TMEM163, STK39, MCCC1/LAMP3, GAK/TMEM175, SNCA, and MAPT) show association with AAO or motor progression. We found associations between single nucleotide polymorphisms at the GBA and MAPT loci and PD AAO and progression. These findings reinforce the complex genetic basis of PD and suggest that distinct genes and variants explain the genetic architecture of PD risk, onset, and progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app