Add like
Add dislike
Add to saved papers

Accelerating Very Deep Convolutional Networks for Classification and Detection.

This paper aims to accelerate the test-time computation of convolutional neural networks (CNNs), especially very deep CNNs [1] that have substantially impacted the computer vision community. Unlike previous methods that are designed for approximating linear filters or linear responses, our method takes the nonlinear units into account. We develop an effective solution to the resulting nonlinear optimization problem without the need of stochastic gradient descent (SGD). More importantly, while previous methods mainly focus on optimizing one or two layers, our nonlinear method enables an asymmetric reconstruction that reduces the rapidly accumulated error when multiple (e.g., ≥ 10) layers are approximated. For the widely used very deep VGG-16 model [1] , our method achieves a whole-model speedup of 4 × with merely a 0.3 percent increase of top-5 error in ImageNet classification. Our 4 × accelerated VGG-16 model also shows a graceful accuracy degradation for object detection when plugged into the Fast R-CNN detector [2] .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app