Add like
Add dislike
Add to saved papers

Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus.

BACKGROUND: Insulin resistance with elevated glucose is a risk factor for non-alcoholic steatohepatitis (NASH). We investigated the effects of the sodium glucose cotransporter 2 (SGLT2) inhibitor luseogliflozin on NASH development using a rodent model.

METHODS: Mice were treated with both nicotinamide and streptozotocin (NA/STZ) to reduce insulin secretory capacity, and then fed a high fat diet containing trans fatty acids (HFDT) for 8 weeks. The NA/STZ HFDT-fed mice were divided into two groups, either treated with luseogliflozin or untreated, during this period. The glucose elevations in the NA/STZ-treated and HFDT-fed mice were significantly improved by luseogliflozin administration. While HFDT feeding induced NASH development as shown by liver weight gain with lipid accumulation and increased serum alanine aminotransferase, these changes were all attenuated in the group treated with luseogliflozin. In addition, fibrotic change and increases in collagen deposition with upregulations of collagen1 and smooth muscle actin and inflammatory cytokine expressions observed in the HFDT-fed mouse livers were also normalized by luseogliflozin administration.

CONCLUSIONS: Taken together, these results obtained in mice demonstrate the favorable effects of administering SGLT2 inhibitors, for the treatment of NASH associated with diabetes mellitus. We anticipate that these agents would be applicable to humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app