JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Uncoupling of Endothelial Nitric Oxide Synthase in Perivascular Adipose Tissue of Diet-Induced Obese Mice.

OBJECTIVE: The present study was conducted to investigate the contribution of perivascular adipose tissue (PVAT) to vascular dysfunction in a mouse model of diet-induced obesity.

APPROACH AND RESULTS: Obesity was induced in male C57BL/6J mice with a high-fat diet for 20 weeks, and vascular function was studied with myograph. In PVAT-free aortas isolated from obese mice, the endothelium-dependent, nitric oxide-mediated vasodilator response to acetylcholine remained normal. In contrast, a clear reduction in the vasodilator response to acetylcholine was observed in aortas from obese mice when PVAT was left in place. Adipocytes in PVAT were clearly positive in endothelial nitric oxide synthase (eNOS) staining, and PVAT nitric oxide production was significantly reduced in obese mice. High-fat diet had no effect on eNOS expression but led to eNOS uncoupling, evidenced by diminished superoxide production in PVAT after eNOS inhibition. As mechanisms for eNOS uncoupling, arginase induction and l-arginine deficiency were observed in PVAT. Obesity-induced vascular dysfunction could be reversed by ex vivo l-arginine treatment and arginase inhibition.

CONCLUSIONS: Diet-induced obesity leads to l-arginine deficiency and eNOS uncoupling in PVAT. The combination therapy with l-arginine and arginase inhibitors may represent a novel therapeutic strategy for obesity-induced vascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app