JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

LRP1B, BRD2 and CACNA1D: new candidate genes in fetal metabolic programming of newborns exposed to maternal hyperglycemia.

Epigenomics 2015 October
AIM: To assess the associations between gestational diabetes mellitus (GDM) and DNA methylation levels at genes related to energy metabolism.

PATIENTS & METHODS: Ten loci were selected from our recent epigenome-wide association study on GDM. DNA methylation levels were quantified by bisulfite pyrosequencing in 80 placenta and cord blood samples (20 exposed to GDM) from an independent birth cohort (Gen3G).

RESULTS: We did not replicate association between DNA methylation and GDM. However, in normoglycemic women, glucose levels were associated with DNA methylation changes at LRP1B and BRD2 and at CACNA1D and LRP1B gene loci in placenta and cord blood, respectively.

CONCLUSION: These results suggest that maternal glucose levels, within the normal range, are associated with DNA methylation changes at genes related to energy metabolism and previously associated with GDM. Maternal glycemia might thus be involved in fetal metabolic programming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app