JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural and electrical properties of catalyst-free Si-doped InAs nanowires formed on Si(111).

We report structural and electrical properties of catalyst-free Si-doped InAs nanowires (NWs) formed on Si(111) substrates. The average diameter of Si-doped InAs NWs was almost similar to that of undoped NWs with a slight increase in height. In the previous works, the shape and size of InAs NWs formed on metallic catalysts or patterned structures were significantly changed by introducing dopants. Even though the external shape and size of the Si-doped NWs in this work were not changed, crystal structures inside the NWs were significantly changed. For the undoped InAs NWs, both zincblende (ZB) and wurzite (WZ) structures were observed in transmission-electron microscope images, where the portion of WZ structure was estimated to be more than 30%. However, only ZB was observed with an increase in stacking fault (SF) for the Si-doped NWs. The undoped and Si-doped InAs NWs were used as channels of four-point electrical measurements with Al/Ni electrodes to investigate electrical properties. The resistivity calculated from the current-voltage curve of a Si-doped InAs NW showed 1.32 × 10(-3) Ωcm, which was dramatically decreased from 10.14 × 10(-3) Ωcm for the undoped InAs NW. A relatively low resistivity of catalyst-free Si-doped InAs NWs was achieved without significant change in structural dimensions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app