JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Investigation of the effect of magnetic particles on the Crystal Violet adsorption onto a novel nanocomposite based on κ-carrageenan-g-poly(methacrylic acid).

Carbohydrate Polymers 2016 January 21
A novel nanocomposite hydrogel prepared by incorporating Fe3O4 magnetic nanoparticles into the κ-carrageenan-g-poly (methacrylic acid) with in situ polymerization and was characterized by FT-IR, XRD, SEM, TEM and VSM. Synthesized nanocomposite was used to adsorb Crystal Violet (CV) (cationic dye) in aqueous solution in a batch system. The research studies showed that the adsorption of CV can be impressed as a function of contact time, initial concentration of CV, pH and molar ratio of κ-carrageenan to poly(methacrylic acid). CV adsorption tests disclosed that it only takes 15 min to reach the equilibrium and adsorption capacity for this dye was 28.24 mg g(-1). Langmuir isotherm for equilibrium adsorption data was fitted well and the pseudo-second-order model can describe the adsorption kinetics. Thermodynamic parameters of ΔG°, ΔH° and ΔS° showed the endothermic nature of adsorption and a spontaneous process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app