Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photosensitizer-assembled PEGylated graphene-copper sulfide nanohybrids as a synergistic near-infrared phototherapeutic agent.

OBJECTIVES: Stimulative nanostructures play a crucial role in developing the smart nanomedicine for high therapeutic efficacy with minimum adverse effects. Herein, a near-infrared (NIR) light-responsive nanohybrids p-nanographene oxide (GO)-copper sulfide (CuS)/indocyanine green (ICG) comprised of GO, CuS nanoparticles and photosensitizer ICG was fabricated to couple the photothermal property of CuS and photodynamic effect of ICG in one system in order to achieve the synergistic phototherapy.

METHODS: pGO-CuS/ICG was constructed by self-assembling ICG on pGO-CuS nanostructure. Its physicochemical, photothermal and photodynamic properties were studied by spectroscopic methods. The in vitro cellular uptake, cytotoxicity, the single/combined photothermal therapeutic (PTT) and photodynamic therapeutic (PDT) effects were investigated with biological techniques.

RESULTS: pGO-CuS/ICG exhibited high efficacy of photothermal conversation and singlet oxygen generation under NIR laser excitation. It entered into the target cancer cells probably via passive transmembrane pathway and exerted obvious PTT and PDT effect against the tumor cells upon irradiation with the respective 940 and 808 nm lasers. In particular, the tremendous synergistic efficacy of PDT and PTT had been demonstrated by tuning the NIR laser combined irradiation.

CONCLUSIONS: This study promises the future applications of pGO-CuS/ICG as a NIR light activable theranostic nanodrug for deep-seated cancer noninvasive phototherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app