Add like
Add dislike
Add to saved papers

The potential of anti-malarial compounds derived from African medicinal plants, part III: an in silico evaluation of drug metabolism and pharmacokinetics profiling.

BACKGROUND: Malaria is an endemic disease affecting many countries in Tropical regions. In the search for compound hits for the design and/or development of new drugs against the disease, many research teams have resorted to African medicinal plants in order to identify lead compounds. Three-dimensional molecular models were generated for anti-malarial compounds of African origin (from 'weakly' active to 'highly' active), which were identified from literature sources. Selected computed molecular descriptors related to absorption, distribution, metabolism, excretion and toxicity (ADMET) of the phytochemicals have been analysed and compared with those of known drugs in order to access the 'drug-likeness' of these compounds.

RESULTS: In the present study, more than 500 anti-malarial compounds identified from 131 distinct medicinal plant species belonging to 44 plant families from the African flora have been considered. On the basis of Lipinski's 'Rule of Five', about 70% of the compounds were predicted to be orally bioavailable, while on the basis of Jorgensen's 'Rule of Three', a corresponding >80% were compliant. An overall drug-likeness parameter indicated that approximately 55% of the compounds could be potential leads for the development of drugs.

CONCLUSIONS: From the above analyses, it could be estimated that >50% of the compounds exhibiting anti-plasmodial/anti-malarial activities, derived from the African flora, could be starting points for drug discovery against malaria. The 3D models of the compounds have been included as an accompanying file and could be employed in virtual screening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app