Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Acetyltransferase p300 collaborates with chromodomain helicase DNA-binding protein 4 (CHD4) to facilitate DNA double-strand break repair.

Mutagenesis 2016 March
Chromatin remodelling is critical for repairing DNA damage and maintaining genomic integrity. Previous studies have reported that histone acetyltransferase p300 and ATP-dependent chromatin remodeler chromodomain helicase DNA-binding protein 4 (CHD4) functions, respectively, in DNA double-strand breaks (DSBs) repair. But the physiological significance of their interaction remains elusive. Here, we showed that p300 and CHD4 were both recruited to the sites of DSBs. Their ablation led to impaired DSBs repair and sensitised cells to laser and the anti-cancer drug, etoposide. Using DR-GFP and EJ5-GFP reporter systems, we found that knockdown of p300 or CHD4 impaired the homologous recombination (HR) repair but no the non-homologous end joining (NHEJ) repair. Furthermore, p300 or CHD4 knockdown respectively suppressed the recruitment of replication protein A (RPA), a key protein for HR, to the DSB sites. In addition, immunofluorescence results showed that knockdown of p300 reduced the recruitment of CHD4 at DSB sites. In turn, CHD4 knockdown also decreased p300 assembly. Moreover, immunoprecipitation and purified protein pull down assay revealed that p300 physically interacted with CHD4 at DNA damage sites, and this interaction was dependent on the chromodomain and ATPase/helicase domain of CHD4 and the CH2, Bd and HAT domains of p300. These results indicate that p300 and CHD4 could function cooperatively at DSB sites and provide a new insight into the detailed crosstalk among the chromatin remodelling proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app