Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Augmentation of Fracture Healing Using Soft Callus.

OBJECTIVES: This study sought to investigate the effect of soft callus removal and reapplication in a rat closed femur fracture model. We hypothesized that removing soft callus will impair fracture healing, whereas reapplication will facilitate healing.

METHODS: A closed midshaft femur fracture was created in 78 rats and stabilized with an intramedullary wire. Seven days later, rats were equally divided and fractures surgically exposed. In the control group, no callus was removed, whereas in the callus removal group CR(-) group, the callus was removed and in the callus replaced group CR(+), callus was removed and replaced. Half of the rats were killed at 4 and 7 weeks. Fracture healing was graded with radiographs and callus volume measured with micro-CT. Mechanical torsion properties were measured, and histologic analysis was conducted.

RESULTS: At both end points, evidence of delayed healing was found on radiographs and micro-CT in CR(-) rats (P = 0.0001), whereas CR(+) rats showed normal fracture healing compared with controls. The normalized callus volume was similar in all groups at both end points. At 7 weeks, the maximum stiffness in CR(-) rats was 68% less than control (P = 0.0001). Stiffness increased 55% in CR(+) rats from CR(-) rats (P = 0.0017). Histology supported our findings with complete endochondral ossification in CR(+) rats but wide areas of hyaline cartilage in CR(-) rats at 7 weeks.

CONCLUSIONS: Removal of soft callus in a rat model delays fracture healing at early and late time points, whereas replacement mitigates these negative consequences. Replacing the soft callus should be considered in all osteosynthesis procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app